FUJICLEAN PLANT

中・大規模浄化槽
産業廃水処理ユニット
設計からメンテナンスまで、合理的なシステムで信頼性の高い製品をお届けします

フジクリーンは、より信頼性の高い製品をお届けするために、設計から製品製作・施工・メンテナンスまで、より合理的なシステムを整備し、ISO9001にも審査登録。各分野の専門スタッフ・技術者のチームワークで、高品質で高性能な水処理システムの開発・提供を行っています。

BASIC PROCESS

基本提案
排水処理システムの提案にあたって徹底的な調査と分析を実施し、基本プランを作成します。

設計インプット
あらゆる設計条件をコンピュータにインプット、CADシステムによって、迅速で正確で信頼性の高い「排水処理システム」を決定します。

積算・仕様決定

受注
排水処理システムのプランが完成したら、受注契約を結びます。

製品製作
CADシステムにより作成された精密な図面をもとに、CAMシステムを活用することで高品質、高性能を実現します。

施工
フジクリーンの特許工法「柱付管体」で工期を大幅に短縮、各種装置の機能を細部までチェックし、試運転を実施します。

メンテナンス
水質保全に不可欠な定期検査や、あらゆる問題に対処、全国ネットサービス体制を活かし、専門スタッフを派遣しています。
製品ラインアップ

<table>
<thead>
<tr>
<th>管体形状</th>
<th>处理方式</th>
<th>特記</th>
<th>建体形状</th>
<th>处理対象人員 (人)</th>
<th>污水量 (m³/日)</th>
<th>BOD (mg/ℓ)</th>
<th>COD (mg/ℓ)</th>
<th>SS (mg/ℓ)</th>
<th>T-N (mg/ℓ)</th>
<th>T-P (mg/ℓ)</th>
<th>ページ数</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCN</td>
<td>潮流床体、傾斜式クリーン槽方式</td>
<td>汎用コンパクトタイプ</td>
<td>I II III</td>
<td>51 180</td>
<td>2.55 36</td>
<td>15 25</td>
<td>10 20</td>
<td>- -</td>
<td>P.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>倾斜床体、傾斜式クリーン槽方式</td>
<td>汎用コンパクトタイプ</td>
<td>I II III</td>
<td>51 500</td>
<td>10.2 100</td>
<td>20 (30)</td>
<td>(50)</td>
<td>- -</td>
<td>P.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRX-G</td>
<td>浸没流動式・鋼板床体流動槽方式</td>
<td>5 90</td>
<td>1 18</td>
<td>10 (20)</td>
<td>10 10 1</td>
<td>P.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>浸没流動式・鋼板床体流動槽方式</td>
<td>51 4000</td>
<td>10.2 200</td>
<td>5 10 5</td>
<td>0.5</td>
<td>P.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMJ</td>
<td>浸没流動式・鋼板床体流動槽方式</td>
<td>51 7200</td>
<td>5.1 360</td>
<td>10 15</td>
<td>5</td>
<td>-</td>
<td>P.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRN</td>
<td>浸没流動式・鋼板床体流動槽方式</td>
<td>I II</td>
<td>60 150</td>
<td>12 30</td>
<td>10 -</td>
<td>10</td>
<td>P.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRX</td>
<td>浸没流動式・鋼板床体流動槽方式</td>
<td>II 60 150</td>
<td>12 30</td>
<td>10 -</td>
<td>10</td>
<td>1</td>
<td>P.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td>浸没流動式・鋼板床体流動槽方式</td>
<td>国交省例示施設</td>
<td>I II III</td>
<td>51 500</td>
<td>2.55 38.72</td>
<td>20 (30)</td>
<td>(50)</td>
<td>-</td>
<td>P.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PU</td>
<td>浸没流動式・鋼板床体流動槽方式</td>
<td>国交省例示施設</td>
<td>I II III</td>
<td>101 500</td>
<td>5.05 112</td>
<td>20 (30)</td>
<td>(50)</td>
<td>-</td>
<td>P.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>産業廃水</td>
<td>-P-F</td>
<td>浸没流動式・鋼板床体流動槽方式</td>
<td>FRPで処理施設採用</td>
<td>コンパクト</td>
<td>51 700</td>
<td>13.77 189</td>
<td>5 10 5</td>
<td>15</td>
<td>0.13</td>
<td>P.13</td>
<td></td>
</tr>
<tr>
<td>集落排水</td>
<td>-SUR-F</td>
<td>浸没流動式・鋼板床体流動槽方式</td>
<td>-</td>
<td>-</td>
<td>51 400</td>
<td>13.8 108</td>
<td>20 -</td>
<td>50</td>
<td>-</td>
<td>P.13</td>
<td></td>
</tr>
</tbody>
</table>

産業廃水処理ユニット

<table>
<thead>
<tr>
<th>用途</th>
<th>型式</th>
<th>处理方式</th>
<th>放流形</th>
<th>放流能</th>
<th>BOD (mg/ℓ)</th>
<th>SS (mg/ℓ)</th>
<th>n-Hex (mg/ℓ)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>人工透析センター</td>
<td>FJPⅡ</td>
<td>連続式中和処理方式</td>
<td>下水道形状 (除害施設)</td>
<td>～80床</td>
<td>- -</td>
<td>-</td>
<td>Sを5を超え5未満</td>
<td>P.16</td>
</tr>
<tr>
<td>人工透析</td>
<td>FJT</td>
<td>中和透析+浮体流動方式</td>
<td>下水道形状 (除害施設)</td>
<td>10 80床</td>
<td>600 600</td>
<td>30</td>
<td>Sを5を超え5未満</td>
<td>P.17</td>
</tr>
<tr>
<td>人工透析</td>
<td>FJTX</td>
<td>中和透析+浮体流動方式</td>
<td>河川形状</td>
<td>10 50床</td>
<td>20 50</td>
<td>-</td>
<td>5.8 6.6</td>
<td>P.18</td>
</tr>
<tr>
<td>人工透析センター</td>
<td>FMJ-X</td>
<td>中和透析+浮体流動加圧方式</td>
<td>河川形状</td>
<td>10 50床</td>
<td>10 10</td>
<td>-</td>
<td>5.8 6.6</td>
<td>P.19</td>
</tr>
<tr>
<td>学校給水センター</td>
<td>FKR</td>
<td>拘束流動方式</td>
<td>下水道形状 (除害施設)</td>
<td>15 150m³/日</td>
<td>600 600</td>
<td>30</td>
<td>Sを5を超え5未満</td>
<td>P.20</td>
</tr>
<tr>
<td>学校給水センター</td>
<td>FKR-X</td>
<td>拘束流動方式</td>
<td>河川形状</td>
<td>10 80m³/日</td>
<td>20 50</td>
<td>30</td>
<td>5.8 6.6</td>
<td>P.21</td>
</tr>
<tr>
<td>学校給水センター</td>
<td>FKM</td>
<td>動体分解活性汚泥方式</td>
<td>河川形状</td>
<td>80.1 150m³/日</td>
<td>20 50</td>
<td>30</td>
<td>5.8 6.6</td>
<td>P.21</td>
</tr>
<tr>
<td>洗濯水</td>
<td>FGUR</td>
<td>動体流動方式 (浮体加圧加温)</td>
<td>河川形状</td>
<td>3 12万坪/時</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>洗濯水</td>
<td>FGURA</td>
<td>動体流動方式 (浮体加圧加温)</td>
<td>河川形状</td>
<td>3 12万坪/時</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>採水水</td>
<td>FSR</td>
<td>動体流動方式</td>
<td>河川形状</td>
<td>3m³/日</td>
<td>120</td>
<td>-</td>
<td>5.8 6.6</td>
<td>P.23</td>
</tr>
</tbody>
</table>

管体形状ラインアップ

施工条件に合わせて、3つの管体形状からベストなプランを提案します。（FRP評価取得済）

施工性抜群のⅠ型

フジクリーン独自の柱付管体（Ⅰ型）は、柱筋を差し込み上部からコンクリートを流し込むだけで槽本体・スラブ・ベースが完全に一体化し固定することができます。

※FRP補強フレーム

直径 □2,500 補強柱付

【乗用車以上の積載荷重の現場】

コストパフォーマンスのⅡ型

浮上防止パンダを使用して、ベースにしっかりと固定されます。積載荷重がかからない現場では、施工をより簡単に行うことができます。（標準高さ 2,810H）

直径 □2,500

【乗用車以上の積載荷重の現場（施工写真）】

浅埋め型のⅢ型

施工方法はⅡ型と同様に浅埋めタイプを用意しました。地下水位の高い現場、岩壁等の地盤の現場に最適です。（標準高さ 2,270H）

直径 □2,000

【歩行者荷重の現場（乗用車以上の積載荷重時は外柱必要）】

【地下水位の高い現場 岩壁等の地盤の現場】
フレキシブルなレイアウト
配管、動力機器を減らし、シンプルな設備

施工性を向上させ、メンテナンスの簡素化を実現した環境配慮型浄化槽

施工性向上 メンテナンスの簡素化 環境配慮型浄化槽

三位一体でパワーアップ!

レイアウトフリー

● 流入管を従来品より50mm深くし、GL-1000（かさ上げ300H）まで原水ポンプ槽が不要になりました。
● 放流管を従来品より150mm浅くし、自然放流が可能なエリアが拡大しました。

フローシート

前処理

処理対象人員: 51〜180人 (2.55〜36m³/日)

嫌気ろ床担体流動循環ろ過方式

施工性を向上させ、メンテナンスの簡素化を実現した環境配慮型浄化槽

清掃頻度は6か月に1回以上
点検頻度は3か月に1回以上

性能評価を取得したタイプでは初めて窒素負荷に応じた設計が可能になりました。

放流水質

BOD 15mg/L以下
COD 25mg/L以下
SS 10mg/L以下
T-N 20mg/L以下

※イラストはPCN-C型のイメージです
シンプル設備

メンテナンスの簡素化

【記号説明】
ZR：前置担体流動槽 KJ：夾雑物除去槽 KR1：嫌気ろ床槽第1室 KR2：嫌気ろ床槽第2室 R：担体流動槽 JR：循環ろ過槽 S：消毒槽

※A〜C型は管体形状I，II型（Φ2500），W型はIII型（Φ2000）

PCN型 製品寸法例

人
槽
型
式
寸法
L
型
式
寸法
L
型
式
寸法
L
型
式
寸法
L

51
PCN I-51A
4,050
PCN II-51A
4,050
PCN III-51W
5,960

60
PCN I-60A
4,410
PCN II-60A
4,280
PCN III-60W
6,680

70
PCN I-70B
5,470
PCN II-70B
5,350
PCN III-70W
7,550

80
PCN I-80B
5,850
PCN II-80B
5,730
PCN III-80W
8,450

90
PCN I-90B
6,470
PCN II-90B
6,300
PCN III-90W
9,370

100
PCN I-100B
6,950
PCN II-100B
6,710
PCN III-100W
10,320

110
PCN I-110C
8,140
PCN II-110C
7,960
PCN III-110W
11,290

120
PCN I-120C
8,720
PCN II-120C
8,460
PCN III-120W
12,260

130
PCN I-130C
9,220
PCN II-130C
8,960
PCN III-130W
13,240

140
PCN I-140C
9,730
PCN II-140C
9,470
PCN III-140W
14,220

150
PCN I-150C
10,220
PCN II-150C
9,970
PCN III-150W
15,200

160
PCN I-160C
10,730
PCN II-160C
10,520
PCN III-160W
16,180

170
PCN I-170C
11,410
PCN II-170C
11,170
PCN III-170W
17,160

180
PCN I-180C
11,920
PCN II-180C
11,670
PCN III-180W
18,140

【事務所などトイレ中心の排水】

流入汚水量：200ℓ/人・日 流入BOD：200mg/ℓ 流入T-N：50mg/ℓ

人
槽
型
式
寸法
L
型
式
寸法
L
型
式
寸法
L

51
PCN I-51B
5,540
PCN II-51B
5,440

60
PCN I-60B
6,090
PCN II-60B
5,960

70
PCN I-70C
7,510
PCN II-70C
7,380

80
PCN I-80C
8,190
PCN II-80C
8,060

90
PCN I-90C
8,990
PCN II-90C
8,730

100
PCN I-100C
9,670
PCN II-100C
9,460

110
PCN I-110C
10,460
PCN II-110C
10,290

120
PCN I-120C
11,290
PCN II-120C
11,050

128(130)
PCN I-128C
11,910
PCN II-130C
11,840

※I型は128人槽，II型は130人槽

【記号説明】
ZR：前置担体流動槽 KJ：夾雑物除去槽 KR1：嫌気ろ床槽第1室 KR2：嫌気ろ床槽第2室 R：担体流動槽 JR：循環ろ過槽 S：消毒槽
フジクリーンプラント

PC型
処理対象人員：51～500人（10.2～100m³/日）

担体流動・濾過方式（流量調整槽）

コンパクト化し、敷地を有効活用

- 担体流動・濾過方式の採用により最大60%のコンパクト化を実現（例示仕様型 槽長比）

担体濾過技術により沈殿槽が不要になり、装置がコンパクトになりました。230人槽まで、横置槽一本で設置できます。
※230人槽設計条件：46m³/日×流入BOD 200mg/ℓ×排水時間12h

処理性能がより安定！

担体流動槽の前段に夾雑物除去槽を設け、SS分を効率よく除去します。又、担体濾過技術により、濾過感のあるクリアな処理水が安定して得られます。

レイアウトフリー

- 流入管を従来品より50mm 深くし、GL=1000（かさ上げ300H）まで原水ポンプ槽が不要になりました。
- 放流管を従来品より150mm 浅くし、自然放流の可能なエリアが拡大しました。

フローシート

- 流入 → 計量調整装置 → 担体流動槽 → 夾雑物除去槽 → 担体濾過槽 → 汚泥濃縮貯留槽 → 汚泥排出
- 放流 → 汚泥壁
- 返原水

注）汚泥壁運転とは、影響期間（立ち上げ時）に行う運転（維持管理要領書参照）。

※イラストはPC-A型のイメージです
排水

<table>
<thead>
<tr>
<th>出口時間</th>
<th>处理対象人員</th>
<th>形式</th>
<th>寸法</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>60</td>
<td>L1</td>
<td>-</td>
</tr>
<tr>
<td>80</td>
<td>L2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>L3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>L4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>L1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>L2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>L3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>L4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>L1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>L2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>L3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>L4</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

【記号説明】 BS：ばっ気型スクリーン RT：流量調整槽 NT：汚泥濃縮貯留槽 KJ：収納廃棄物 KJ：汚泥流動槽 TR：汚泥流動槽 S：消毒槽 HP：放流ポンプ槽

※1 A～Eパターンは個体形状1，2型（³2500） ※2 ばっ気型スクリーンと放流ポンプ槽は省略する場合があります。
フジクリーン 高度処理浄化槽

CRX-G型

流量調整型嫌気濁床・担体流動生物濁過循環方式にリン除去装置を加えた方式

業界唯一のし尿系対応浄化槽

「し尿主体の事業系の排水処理の場合に限る」

【し尿系排水の特徴】

住宅系以外の建築用途の場合には、全排水中に占めるし尿系の割合によって、汚濁物質の濃度は大きく異なります。特に工場、事業場は、浴室、洗濯、台所からの排水が少なく、トイレ、洗面からの排水が中心となり、窒素、リンの濃度が高く、負荷量も多い事が一般的です。

CRX-G型はこのようなし尿系排水の特徴に合わせて専用設計をした業界唯一の浄化槽です。

生物学的硝化脱窒素法のしくみ

流入水の窒素濃度が高くなると脱窒酸化に必要な有機物の消費量が大きく、有機物量が不足します。脱窒には有機物が窒素の3〜5倍程度必要ですので、それを補うため、有機炭素源（メタノール）を添加します。

流入水の窒素濃度が高くなると硝化反応で生成される酸（H⁺）が多くなり、硝化反応に必要なアルカリ分の消費量が大きくなり、この不足を補うため、アルカリ塩（水酸化ナトリウム）を添加します。

鉄電解法によるリン除去のしくみ

鉄電解法により、鉄とリンを結合させ、FePO₄として除去します。

フローシート
し尿系排水専用の運転モードを標準装備（F仕様・H仕様）

- 膜分離法の採用により、高濃度活性汚泥運転が可能。
- 専用の制御プログラムで、タイマなどの最適設定が簡単に行えます。
- 遠隔監視システム導入（オプション）
- 遠隔監視システム導入により、維持管理費用が低減できます。また液中膜のトラブルを予防することができます。
- 用途に合わせて3つの仕様を用意。

用途に合わせた仕様をラインアップ

N仕様
- 共同住宅、ホテル、老人ホームなど生活排水

F仕様
- 工場、事業所などトイレ中心の排水を対象

H仕様
- F仕様にさらなる機能を追加

生産水質

BOD 5mg/l以下
COD 10mg/l以下
SS 100mg/l以下
T-N 10mg/l以下
T-P 0.5mg/l以下
大腸菌群数 100個/cm³以下

F仕様に標準装備
- 常時監視装置
- 通用運転モード
- 長期休暇モード
- 循環ポンプインバーター制御
- メタノール添加装置
- 水酸化ナトリウム添加装置
- 排出運動告発機能（流入水量測定装置採用）
- 負圧及び膜間差圧の常時監視装置

処理水透過のしくみ

膜の表面には、汚れの成分よりもサイズの小さい、マイクロメートル単位の濁孔が存在しているため、透過水（クリーン水）は通過できません。この濁孔は、当該汚水の成分を細かく砕き粉砕し、そのままにしておけば自己洗浄をおこします。そこで、膜の下からはじめます。水流と気泡が膜表面について汚れの成分を「洗い流す」ことで濁孔の目詰まりを防ぎます。

フローシートF仕様：51～500人槽の場合

※処理水槽は省略する場合があります。
豊富な高度処理浄化槽のラインナップ

フジクリーンプラント 高度処理浄化槽

PMJ型
処理対象人員：51～7,200人（5.1～360m³/日）

膜分離活性汚泥方式

膜分離法の採用により、コンパクト設計となっています。

- 膜分離活性汚泥法の採用
 ばっ気槽内の活性汚泥を高濃度に保持できるため、ばっ気槽容量も小さくできます。また、沈殿槽が不要となるため、設置面積が小さくなります。

- 水質規制の厳しい場所に最適
 処理水質が良好で安定しており、BOD10mg/l、COD15mg/l、SS5mg/l以下と高性能となっています。

- 360m³/日まで対応可能
 膜の採用によりFRP製浄化槽で、最大7,200人（360m³/日）までの処理を実現しました。
 （流入BOD200mg/l、排水時間12Hの時）

- 遠隔監視システム導入可能（オプション）
 遠隔監視システム導入により、維持管理費用が低減できます。また液中膜のトラブルを予防することができます。

CRN-60〜150型
処理対象人員：60〜150人（12〜30m³/日）

流量調整型嫌気濾床・担体流動生物濾過循環方式

- 二次処理水の放流量をコントロールし、安定した処理能力を発揮
- 汚泥の返送量が一目瞭然
- 逆洗時は2台のブロワが同時稼動

※イラストはCRN型2系列のイメージです
よりニーズに合わせてお選びいただけます

フジクリーン 高度処理浄化槽
窒素・リン除去型
CRX-60〜150型
処理対象人員：60〜150人（12〜30m³/日）

流量調整型嫌気濾床・担体流動生物濾過循環方式にリン除去装置を加えた方式

戸建住宅、共同住宅、
学校などコミュニティエリアの高度処理浄化槽

● 二次処理水の放流量をコントロールし、安定した処理能力を発揮
● 汚泥の返送量が一目瞭然
● 逆洗時は2台のブロワが同時稼動
● 好気性処理槽の汚水中に鉄電極を浸漬させ、
 リンを除去
● 浄化槽内に組み込まれた中継BOXを着脱自在にし、
 メンテナンス性を向上
● 電極の洗浄方法

窒素・リン除去型
CRX-60〜150型
処理対象人員：60〜150人（12〜30m³/日）

流量調整型嫌気濾床・担体流動生物濾過循環方式にリン除去装置を加えた方式

戸建住宅、共同住宅、
学校などコミュニティエリアの高度処理浄化槽

● 二次処理水の放流量をコントロールし、安定した処理能力を発揮
● 汚泥の返送量が一目瞭然
● 逆洗時は2台のブロワが同時稼動
● 好気性処理槽の汚水中に鉄電極を浸漬させ、
 リンを除去
● 浄化槽内に組み込まれた中継BOXを着脱自在にし、
 メンテナンス性を向上
● 電極の洗浄方法

※イラストはCRX型2系列のイメージです
実績豊富な例示仕様で、メンテナンス性に優れた浄化槽

フジクリーンプラント

PT型
処理対象人員：51～500人（2.55～38.72m³/日）

接触ばっ気方式（沈殿分離槽）

シンプルな構造でメンテナンスが容易

計量ポンプがなく、槽内構造もシンプルなため、メンテナンスが容易です。点検頻度は、1回/3ヶ月以上となります。

汚泥を沈殿分離槽で貯留するため、清掃頻度は1回/年以上の実施となります。
※使用状況により、清掃を実施してください。

接触ばっ気方式の採用により、学校施設等、長期間にわたり計画汚水量より少ない負荷の用途に適しています。

PU型
処理対象人員：101～500人（5.05～112m³/日）

接触ばっ気方式（流量調整槽）

流量調整槽を有するので、安定した水質を提供

流量調整を行うため、後段の処理槽へ一定の水を移送でき、ピーク排水があった場合でも安定した処理ができます。

点検頻度は、1回/2週間以上となります。

余利汚泥は、汚泥濃縮貯留槽で、濃縮（減容）し、貯留します。
貯留容量は、14日分※を有しています。
※使用状況により、清掃を実施してください。
経済性に優れ高性能な FRP 製処理施設

地域環境資源センター

-FM-F型
処理対象人員：51〜700人（13.77〜189㎥/日）

膜分離活性汚泥方式

- 確実で安定した処理性能
 「膜分離活性汚泥方式」を採用することにより、今後の環境動向を先取りした高度な処理性能を発揮します。
- 豊富なバリエーション
 処理対象人員は60人から360人まで、360人から700人まで20人槽ごととなっています。
- 自由な配置
 直列や並列などの敷地に合わせた配列ができます。
- 施工期間の大幅な短縮
 工場生産品のFRP製品のため安定した品質が確保でき、現場での施工が容易に行えます。
- 選べるオプション
 原水ポンプ槽、汚泥貯留槽、放流ポンプ槽は、オプション群から必要なものが選択できます。

地域環境資源センター

-S96-F型
処理対象人員：51〜400人（13.8〜108㎥/日）

沈殿分離及び接触ばら気を組み合わせた方式

- 豊富なバリエーション
 処理対象人員は51人から400人の内、10人ごとから選択できます。
- FRP製処理施設で細分まで配慮が行き届いた高スペックです。
- 自由な配置
 直列や並列などの敷地に合わせた配列ができます。
- 選べるオプション
 原水ポンプ槽、散水ポンプ槽、汚泥貯留槽、放流ポンプ槽は、オプション群から必要なものが選択できます。

※イラストは100人槽のイメージです
（原水ポンプ槽はオプションです）
φ2000管体 (W=2.012 H=2,270)

<table>
<thead>
<tr>
<th>CRX-G型</th>
<th>人型</th>
<th>設計汚水量</th>
<th>流入水質 BOD</th>
<th>T-N</th>
<th>T-P</th>
<th>沈殿槽</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>CRX-5G</td>
<td>3,270</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CRX-10G</td>
<td>3,940</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>CRX-30G</td>
<td>10,030</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>CRX-50G</td>
<td>6,600</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>CRX-60G</td>
<td>10,030×2</td>
<td>-</td>
<td>φ1,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>CRX-70G</td>
<td>4,500×2</td>
<td>2,780×2</td>
<td>φ2,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>CRX-80G</td>
<td>5,200×2</td>
<td>8,640×2</td>
<td>φ1,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>CRX-90G</td>
<td>5,900×2</td>
<td>9,710×2</td>
<td>φ1,500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRN-CRX型</th>
<th>人型</th>
<th>設計汚水量</th>
<th>流入水質 BOD</th>
<th>T-N</th>
<th>T-P</th>
<th>沈殿槽</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>CRN(X)-60</td>
<td>6,050×2</td>
<td>-</td>
<td>φ1,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>CRN(X)-70</td>
<td>7,130×2</td>
<td>-</td>
<td>φ1,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>CRN(X)-80</td>
<td>8,020×2</td>
<td>-</td>
<td>φ1,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>CRN(X)-100</td>
<td>10,030×2</td>
<td>-</td>
<td>φ1,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>CRN(X)-120</td>
<td>8,020×3</td>
<td>-</td>
<td>φ1,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>CRN(X)-150</td>
<td>10,030×3</td>
<td>-</td>
<td>φ1,500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

φ2500管体 (W=2,500 H=2,810)

<table>
<thead>
<tr>
<th>PM型</th>
<th>人型</th>
<th>設計汚水量</th>
<th>流入水質 BOD</th>
<th>T-N</th>
<th>T-P</th>
<th>沈殿槽</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>PMⅠ-51A</td>
<td>8,000</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>PMⅠ-100A</td>
<td>9,900</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>PMⅠ-200B</td>
<td>6,650</td>
<td>8,800</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>PMⅠ-300B</td>
<td>9,250</td>
<td>10,600</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>PMⅠ-400C</td>
<td>10,500</td>
<td>8,450</td>
<td>7,600</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>PMⅠ-500D</td>
<td>11,500</td>
<td>9,950</td>
<td>5,650</td>
<td>8,500</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PMJ型</th>
<th>人型</th>
<th>設計汚水量</th>
<th>流入水質 BOD</th>
<th>T-N</th>
<th>T-P</th>
<th>沈殿槽</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>PMJⅠ-51A</td>
<td>7,000</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>PMJⅠ-100A</td>
<td>7,000</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>PMJⅠ-200A</td>
<td>8,800</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>PMJⅠ-300A</td>
<td>11,200</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>PMJⅠ-400B</td>
<td>5,450</td>
<td>8,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>PMJⅠ-500B</td>
<td>6,650</td>
<td>9,800</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PT型</th>
<th>人型</th>
<th>設計汚水量</th>
<th>流入水質 BOD</th>
<th>T-N</th>
<th>T-P</th>
<th>沈殿槽</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>PTⅠ-51A</td>
<td>9,460</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>PTⅠ-60A</td>
<td>9,910</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>PTⅠ-80B</td>
<td>4,300</td>
<td>8,310</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>PTⅠ-100B</td>
<td>5,240</td>
<td>9,570</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>PTⅠ-120B</td>
<td>9,570</td>
<td>5,800</td>
<td>φ2,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>PTⅠ-150F</td>
<td>11,170</td>
<td>6,400</td>
<td>φ2,500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PU型</th>
<th>人型</th>
<th>設計汚水量</th>
<th>流入水質 BOD</th>
<th>T-N</th>
<th>T-P</th>
<th>沈殿槽</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>PUⅠ-101C</td>
<td>9,570</td>
<td>-</td>
<td>-</td>
<td>φ2,000</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>PUⅠ-120C</td>
<td>10,220</td>
<td>-</td>
<td>-</td>
<td>φ2,500</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>PUⅠ-150D</td>
<td>6,800</td>
<td>6,400</td>
<td>-</td>
<td>φ2,500</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>PUⅠ-200D</td>
<td>8,500</td>
<td>8,300</td>
<td>-</td>
<td>φ2,500</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>PUⅠ-250D</td>
<td>10,300</td>
<td>9,700</td>
<td>-</td>
<td>φ2,500</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>PUⅠ-300K</td>
<td>6,300</td>
<td>6,600</td>
<td>6,100</td>
<td>φ2,500×2</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>PUⅠ-400K</td>
<td>9,000</td>
<td>7,800</td>
<td>8,900</td>
<td>6,800</td>
<td>φ2,500×2</td>
</tr>
</tbody>
</table>

地域環境資源センター - Fm-F型

<table>
<thead>
<tr>
<th>人型</th>
<th>型式</th>
<th>設計汚水量</th>
<th>流入水質 BOD</th>
<th>T-N</th>
<th>T-P</th>
<th>沈殿槽</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>-Fm-F-1</td>
<td>7,220</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>-Fm-F-1</td>
<td>8,280</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>-Fm-F-2</td>
<td>5,330</td>
<td>5,890</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>-Fm-F-2</td>
<td>7,980</td>
<td>8,590</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>-Fm-F-3</td>
<td>7,980×2</td>
<td>8,590×2</td>
<td>φ2,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>-Fm-F-3</td>
<td>10,630×2</td>
<td>10,290×2</td>
<td>φ2,500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

地域環境資源センター - S96-F型

<table>
<thead>
<tr>
<th>人型</th>
<th>型式</th>
<th>設計汚水量</th>
<th>流入水質 BOD</th>
<th>T-N</th>
<th>T-P</th>
<th>沈殿槽</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>-S96-F-1</td>
<td>5,540</td>
<td>6,620</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>-S96-F-1</td>
<td>7,370</td>
<td>7,610</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>-S96-F-2</td>
<td>8,340</td>
<td>6,510</td>
<td>-</td>
<td>φ2,000</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>-S96-F-2</td>
<td>11,550</td>
<td>8,890</td>
<td>-</td>
<td>φ2,500</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>-S96-F-3</td>
<td>8,730</td>
<td>6,150</td>
<td>8,390</td>
<td>φ2,500</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>-S96-F-4</td>
<td>11,300</td>
<td>9,130</td>
<td>10,610</td>
<td>φ2,500×2</td>
<td></td>
</tr>
<tr>
<td>項目</td>
<td>建築用途</td>
<td>適用対象人員算定基準</td>
<td>適用対象人員算定基準</td>
<td>算定単位</td>
<td>算定単位</td>
<td>算定単位</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>イ</td>
<td>公会堂・集合場・劇場・映画館・演講場</td>
<td>住宅</td>
<td>16（ℓ/戸・日）</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>ロ</td>
<td>電気宮殿・電気劇場・映画館</td>
<td>住宅</td>
<td>2,400（ℓ/戸・日）</td>
<td>260</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>イ</td>
<td>住宅</td>
<td>A ≤ 130（㎡）の場合</td>
<td>n = 5</td>
<td>1,000（ℓ/戸・日）</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>ロ</td>
<td>共同住宅</td>
<td>（2）A ≥ 170（㎡）の場合</td>
<td>n = 7</td>
<td>1,400（ℓ/戸・日）</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>イ</td>
<td>タクシー・タクシー場所</td>
<td>業務用の設備を有する場所</td>
<td>300床/床未満の場合</td>
<td>n = 8B</td>
<td>1,000（ℓ/床・日）</td>
</tr>
<tr>
<td></td>
<td>ロ</td>
<td>バスプラザ・バスプラザ</td>
<td>業務用の設備を有する場所</td>
<td>300床/床以上の場合</td>
<td>n = 5B</td>
<td>1,000（ℓ/床・日）</td>
</tr>
<tr>
<td>4</td>
<td>イ</td>
<td>女子学校・女子短期大学校・女子専門学校</td>
<td>小便器の設備を有する機関</td>
<td>11.43（ℓ/床・日）</td>
<td>7.14</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>ロ</td>
<td>小便器の設備を有する機関</td>
<td>11.43（ℓ/床・日）</td>
<td>7.14</td>
<td>78</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>イ</td>
<td>女子大学・女子短期大学校・女子専門学校</td>
<td>小便器の設備を有する機関</td>
<td>11.43（ℓ/床・日）</td>
<td>7.14</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>ロ</td>
<td>小便器の設備を有する機関</td>
<td>11.43（ℓ/床・日）</td>
<td>7.14</td>
<td>78</td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>イ</td>
<td>医療機関・医療機関</td>
<td>小便器の設備を有する機関</td>
<td>11.43（ℓ/床・日）</td>
<td>7.14</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>ロ</td>
<td>小便器の設備を有する機関</td>
<td>11.43（ℓ/床・日）</td>
<td>7.14</td>
<td>78</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>イ</td>
<td>総合病院・医療機関</td>
<td>小便器の設備を有する機関</td>
<td>11.43（ℓ/床・日）</td>
<td>7.14</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>ロ</td>
<td>小便器の設備を有する機関</td>
<td>11.43（ℓ/床・日）</td>
<td>7.14</td>
<td>78</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>イ</td>
<td>飲食飲楽場所</td>
<td>小便器の設備を有する機関</td>
<td>11.43（ℓ/床・日）</td>
<td>7.14</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>ロ</td>
<td>小便器の設備を有する機関</td>
<td>11.43（ℓ/床・日）</td>
<td>7.14</td>
<td>78</td>
<td>200</td>
</tr>
<tr>
<td>9</td>
<td>イ</td>
<td>体育館</td>
<td>小便器の設備を有する機関</td>
<td>11.43（ℓ/床・日）</td>
<td>7.14</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>ロ</td>
<td>小便器の設備を有する機関</td>
<td>11.43（ℓ/床・日）</td>
<td>7.14</td>
<td>78</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>イ</td>
<td>工場・作業場</td>
<td>小便器の設備を有する機関</td>
<td>11.43（ℓ/床・日）</td>
<td>7.14</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>ロ</td>
<td>小便器の設備を有する機関</td>
<td>11.43（ℓ/床・日）</td>
<td>7.14</td>
<td>78</td>
<td>200</td>
</tr>
</tbody>
</table>

注１: 水量定数を小便器数及びその使用時間に合計した水量定数を用いる。
注２: 本表は、人均用水の算定のための基準の一部を示すものであり、設計、建築、運営その他これに準ずる目的のために個別的に使用される場合は、便宜上使用するものとする。
注３: 本表は、焼きたて用水の算定のための基準の一部を示すものであり、設計、建築、運営その他これに準ずる目的のために個別的に使用される場合は、便宜上使用するものとする。
注４: 女子専用小便器にあっては、便器数を小便器数－1と小便器数とする。
フジクリーン

人工透析廃水

pH調整ユニット
処理能力：～80床

● コンパクトスタイルで省スペースを実現しました。
● ユニット本体は耐腐食性に優れたFRPを採用しました。
● 薬液の注入は、pH比例制御でコントロールし、ランニングコストの低減を実現しました。
● 搾拌方法は運転音の静かなポンプ循環方式を採用しました。
※ pH比例制御で確実に中和する[制御タイプ]、中和した処理水のpH値を常時モニターする[監視タイプ]、処理水のpH値を記録する[記録タイプ]をご用意しています。
※薬液の注入は、過剤防止・次亜塩素酸で設定しております。その他の薬剤を使用される場合は、個別にご相談願います。

連続式中和処理

FJPⅡ-S型 地上設置型（セパレート）

中継ピット FJPⅡ-S型 オプション
コンパクト設計で、かさ上げ床下に格納

ターミナルビルや市街地のビル等のワンフロアを利用した中和処理ユニットを採用できる人工透析クリニックにお勧めします。
● フロア床をかさ上げ床の狭い空間に設置できます。
● 臭気対策も考慮しております。
● 薬液・汚水の漏れに備えて、防液提及び漏水検知機を標準装備しました。

フレキシブル設計で、かさ上げ床下に格納

連続式中和処理

FJPⅡ-M型 地下埋設型
本体は、地下に埋設しますので流入配管が
埋設配管の場合にもポンプ槽なしで処理が行えます。

放流水質
pH 5を超えず未満

産業廃水処理ユニット / 人工透析廃水処理

下水道への放流

産業廃水処理ユニット / 人工透析廃水処理
フジクリーン
人工透析廃水
除害ユニット
処理能力：10～80床

中和緩衝＋担体流動方式
FJR型

- 生物処理の前段に組み込んだ中和緩衝槽で薬剤の影響を減衰させます。
- 担体流動方式の採用で従来方式と比べコンパクトになりました。
- 余剰汚泥の発生も無く、危険な薬品を使用しないため管理も容易で維持管理コストの低減をもたらします。
- 従来装置に比べ15～25%の使用電力の削減を行いました。

フローシート

フジクリーン 人工透析廃水 除害ユニット
処理能力：10～80床

中和緩衝＋担体流動方式
FJR型

フローシート

流 入
中 和 緩 衝 槽
担 体 流 動 槽
放 流 ポ ッ グ 槽
下水道へ放流

放流水質
BOD 600mg/ℓ未満
SS 600mg/ℓ未満
pH 5を超え9未満

寸法表

<table>
<thead>
<tr>
<th>ベット数(床)</th>
<th>型式</th>
<th>寸法(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>FJR(Ⅰ)-10</td>
<td>3,300</td>
</tr>
<tr>
<td>20</td>
<td>FJR(Ⅰ)-20</td>
<td>3,800</td>
</tr>
<tr>
<td>30</td>
<td>FJR(Ⅰ)-30</td>
<td>4,600</td>
</tr>
<tr>
<td>40</td>
<td>FJR(Ⅰ)-40</td>
<td>5,300</td>
</tr>
<tr>
<td>50</td>
<td>FJR(Ⅰ)-50</td>
<td>6,300</td>
</tr>
<tr>
<td>60</td>
<td>FJR(Ⅰ)-60</td>
<td>6,900</td>
</tr>
<tr>
<td>70</td>
<td>FJR(Ⅰ)-70</td>
<td>8,250</td>
</tr>
<tr>
<td>80</td>
<td>FJR(Ⅰ)-80</td>
<td>8,850</td>
</tr>
</tbody>
</table>

※イラストはFJR型のイメージです
フジクリーン

BOD処理ユニット
処理能力：10〜50床

中和緩衝＋担体流動方式
FJR-X型

新方式で、維持管理のご負担を軽減しました。

担体流動方式の採用で、微生物を担体に付着・増殖させることにより生物量を保持します。
微生物の代謝能力により有機物の分解を行います。
処理水と汚泥の固液分離は担体の過によって行われ、維持管理が更に容易になりました。
BOD20mg/ℓ以下、pH5.8〜8.6の処理水質でそのまま、公共用水域へ放流できます。

● 生物処理の前段に組み込んだ中和緩衝調整槽で、薬剤の影響を減衰させます。
● 危険な薬品を使用しないため、管理も容易で維持管理コストの低減をもたらします。

BOD処理ユニット
処理能力：10〜50床

中和緩衝＋担体流動方式
FJR-X型

新方式で、維持管理のご負担を軽減しました。

担体流動方式の採用で、微生物を担体に付着・増殖させることにより生物量を保持します。
微生物の代謝能力により有機物の分解を行います。
処理水と汚泥の固液分離は担体の過によって行われ、維持管理が更に容易になりました。
BOD20mg/ℓ以下、pH5.8〜8.6の処理水質でそのまま、公共用水域へ放流できます。

● 生物処理の前段に組み込んだ中和緩衝調整槽で、薬剤の影響を減衰させます。
● 危険な薬品を使用しないため、管理も容易で維持管理コストの低減をもたらします。
フジクリーン
人工透析廃水
高度処理ユニット
処理能力：10〜50床

中和緩衝+膜分離活性汚泥方式

FJM-X型

・中和緩衝槽の採用と膜処理方式の採用で、高負荷汚泥にも対応し、常時安定した処理水質を確保します。
・中和剤を使用せず、ランニングコストの低減を実現しました。
・膜処理方式の利用により、従来方式に比べ、大幅にコンパクトになりました。

フローシート

フジクリーン
人工透析廃水
高度処理ユニット
処理能力：10〜50床

中和緩衝+膜分離活性汚泥方式

FJM-X型

・中和緩衝槽の採用と膜処理方式の採用で、高負荷汚泥にも対応し、常時安定した処理水質を確保します。
・中和剤を使用せず、ランニングコストの低減を実現しました。
・膜処理方式の利用により、従来方式に比べ、大幅にコンパクトになりました。

フローシート

フジクリーン
人工透析廃水
高度処理ユニット
処理能力：10〜50床

中和緩衝+膜分離活性汚泥方式

FJM-X型

・中和緩衝槽の採用と膜処理方式の採用で、高負荷汚泥にも対応し、常時安定した処理水質を確保します。
・中和剤を使用せず、ランニングコストの低減を実現しました。
・膜処理方式の利用により、従来方式に比べ、大幅にコンパクトになりました。
フジクリーン
除害ユニット
処理能力: 15〜150m³/日

学校給食センター専用の長期休暇モードを標準装備

夏休み、ゴールデンウィーク等の施設休業時には流入の有無を自動で検知し、省エネモードに切り替えます。本システムにより、従来品と比べ年額で平均45%以上の電力消費量の削減となります(当社従来比)。

専用の早期立上げシステムにて、長期休暇後の処理性能の悪化を抑制します。

余剰汚泥の清掃の必要が無く、水処理薬品を用いませんので運転管理費が低廉です。

学校給食センター

寸法表

<table>
<thead>
<tr>
<th>汚水量 (m³/日)</th>
<th>型式</th>
<th>寸法 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>FKR I (Ⅱ)-15</td>
<td>6,850(6,750)</td>
</tr>
<tr>
<td>30</td>
<td>FKR I (Ⅱ)-30</td>
<td>10,650(10,550)</td>
</tr>
<tr>
<td>50</td>
<td>FKR I (Ⅱ)-50</td>
<td>11,000(11,000)</td>
</tr>
<tr>
<td>70</td>
<td>FKR I (Ⅱ)-70</td>
<td>11,950(11,950)</td>
</tr>
<tr>
<td>90</td>
<td>FKR I (Ⅱ)-90</td>
<td>10,000(10,000)</td>
</tr>
<tr>
<td>110</td>
<td>FKR I (Ⅱ)-110</td>
<td>8,000(8,000)</td>
</tr>
<tr>
<td>130</td>
<td>FKR I (Ⅱ)-130</td>
<td>10,000(10,000)</td>
</tr>
<tr>
<td>150</td>
<td>FKR I (Ⅱ)-150</td>
<td>11,950(11,950)</td>
</tr>
</tbody>
</table>

(寸法変更のため、寸法が変わる場合があります。150㎥/日を超える施設については、お問い合わせください。
注) 除害(施設)とは、下水道法第十二条により下水道施設の機能を妨げ、又は公共下水道の施設を損傷するおそれのある下水の障害を除去するために設ける施設をいいます。)

流入

流入

流出

化

指令

指令

下水道への放流

放流水質

- BOD: 600mg/ℓ未満
- SS: 600mg/ℓ未満
- n-Hex: 30mg/ℓ以下
- pH: 5を超え9未満
フジクリーン

学校給食センター

BOD処理ユニット

担体流動方式
FKR-X型
処理能力：10～80m³/日

- 定評ある流量調整槽+担体流動方式を採用。
- 油脂成分の分解促進に優れた担体を採用し、処理性能を向上させました。
- 特別な水処理薬品を用いませんので、運転管理費が低廉です。

膜分離活性汚泥方式
FKM型
処理能力：80.1～150m³/日

- 膜処理方式の採用にて、大水量でも処理槽がコンパクトになります。
- 特別な水処理薬品を用いませんので、運転管理費が低廉です。
- 遠隔監視システムの導入可能（オプション）
遠隔監視システムの導入により、維持管理費用が低減できます。また液中膜のトラブルを予防することができます。

寸法表

<table>
<thead>
<tr>
<th>汚水量 (m³/日)</th>
<th>型式</th>
<th>寸法(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L1</td>
<td>L2</td>
</tr>
<tr>
<td>20</td>
<td>11,830</td>
<td>11,730</td>
</tr>
<tr>
<td>40</td>
<td>10,850</td>
<td>10,850</td>
</tr>
<tr>
<td>60</td>
<td>11,300</td>
<td>11,300</td>
</tr>
<tr>
<td>80</td>
<td>9,500</td>
<td>9,500</td>
</tr>
</tbody>
</table>

※イラストはFKR-X型のイメージです

<table>
<thead>
<tr>
<th>汚水量 (m³/日)</th>
<th>型式</th>
<th>寸法(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L1</td>
<td>L2</td>
</tr>
<tr>
<td>100</td>
<td>11,950</td>
<td>11,950</td>
</tr>
<tr>
<td>120</td>
<td>7,700</td>
<td>7,700</td>
</tr>
<tr>
<td>150</td>
<td>11,950</td>
<td>11,950</td>
</tr>
</tbody>
</table>

※イラストはFKM型のイメージです

放流水質
- BOD 20mg/ℓ未満
- SS 50mg/ℓ未満
- n-Hex 30mg/ℓ以下
- pH 5.8～8.6

学校給食センター
汚水量 (m³/日)
型 式 寸 法 (mm)

L1 L2 L3 L4 L5

L1 L2 L3 L4 L5

L1 L2 L3 L4 L5

厨芥処理の方式により寸法が変わる場合があります。
上記処理能力外の施設でも、本方式での対応は可能です。
窒素・リンの除去については、お問い合わせください。

厨芥処理の方式により寸法が変わる場合があります。
上記処理能力外の施設でも、本方式での対応は可能です。
BOD高度処理、窒素・リンの除去については、お問い合わせください。

放流水質
- BOD 20mg/ℓ未満
- SS 50mg/ℓ未満
- n-Hex 30mg/ℓ以下
- pH 5.8～8.6

学校給食センター
汚水量 (m³/日)
型 式 寸 法 (mm)

L1 L2 L3 L4 L5

L1 L2 L3 L4 L5

L1 L2 L3 L4 L5

厨芥処理の方式により寸法が変わる場合があります。
上記処理能力外の施設でも、本方式での対応は可能です。
BOD高度処理、窒素・リンの除去については、お問い合わせください。
フジクリーン
洗卵廃水処理ユニット
処理能力：3〜12万卵/時

スタンダードタイプ
FGiRS型 30T〜120T
FGoRS型 30T〜120T

アドバンスドタイプ
FGiRA型 30T〜120T
FGoRA型 30T〜120T

ライン方式・オフライン方式 いずれにも対応します。

フジクリーン洗卵廃水処理ユニットは、GPセンターのオートローダー、洗卵機、泡洗浄器、トレー洗濯の廃水を処理します。また、洗卵機械の処理能力（万卵／時）と洗浄時間により廃水量が設定され、稼働時間中はほぼ一定量の廃水で、ピーク時の変動が少ないことが挙げられます。GPセンターから洗水濃度は、家庭からの廃水濃度の2〜5倍にもなり、GPセンターの周辺環境に大きな影響を与えます。フジクリーン洗卵廃水処理ユニットは、GPセンターの集荷方式（インライン・オフライン）、目標処理水質（スタンダード・アドバンスド）に応じたラインアップを用意し、水環境の保全に貢献します。

インライン方式：鶏舎に併設して、洗卵・パッキング施設を設けており、卵は鶏舎からコンベアによって、直接GPセンターへ運ばれる方式です。鶏糞や羽などの混入があり、廃水濃度は比較的高めになります。

オフライン方式：鶏舎とは別の場所に、洗卵・パッキング施設を設けており、農場で一次洗浄を行った後、トラックなどの輸送機でGPセンターへ搬入される方式です。インライン方式に比べて廃水濃度は低くなります。

※廃水部スクリーン設備は、洗卵機の廃水部にカゴを設けミシマゴを除去してください。
※還元剤は安全装置として設けておくため、実際には使用しない場合があります。（タンクの撹拌機は設置していません）
その他の産業廃水

食品製造廃水
- 食品製造廃水
- 食べ物、パン、菓子、米飯、漬物、味噌、食肉・水産・乳製品・農産物加工

病院・研究所廃水
- 病院・研究所廃水
- 検査廃水、実験廃水

動物飼育廃水
- 動物飼育廃水
- 実験動物廃水、動物飼育廃水、飼育動物愛護、実験用小動物飼育

洗浄・その他廃水
- 洗浄・その他廃水
- 洗米廃水、洗車廃水、飲料容器洗浄廃水、リネン廃水

フジクリーン
搾乳廃水処理ユニット 処理能力：3m³/日

担体流動方式

FSR型

- バーラーから出る廃水を担体流動方式により効率的に処理し、放流可能な水質とします。
- 流量調整槽の前処理によりピーク廃水を緩衝し、安定的な処理を実現しました。
- 中和剤を使用せず、ランニングコストの低減を実現しました。

フジクリーン
搾乳廃水処理ユニット 処理能力：3m³/日

放流水質

- BOD 120mg/ℓ以下
- pH 5.8 〜 8.6

基本スペック（参考）

<table>
<thead>
<tr>
<th></th>
<th>処理水量</th>
<th>放流水質</th>
<th>全幅</th>
<th>全長</th>
<th>全高</th>
</tr>
</thead>
<tbody>
<tr>
<td>処理水量</td>
<td>3m³/日</td>
<td>120mg/ℓ（日間平均）</td>
<td>2,012mm</td>
<td>5,200mm</td>
<td>2,270mm</td>
</tr>
</tbody>
</table>

※イラストは FSR型のイメージです

フローシート

<table>
<thead>
<tr>
<th>流入</th>
<th>油分分離槽</th>
<th>流量調整槽</th>
<th>担体流動槽</th>
<th>沈殿槽</th>
<th>消毒槽</th>
<th>放流</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※パーラー廃水又は、分離乳の流入がある場合には別途設計が必要となります。
警告

■消毒剤による発火・爆発・有害ガス事故防止
消毒剤は強力な酸化剤です。消毒剤の取扱説明書に従ってください。
消毒剤には、塩素系の無機・有機の2種類があります。これらを一緒に薬剤受け(筒)に入れないでください。
これらの注意を怠ると、発火・爆発・有害ガスの生ずるおそれがあります。

■感電・発火事故防止
ブロワのカバー・動力操作盤の扉は、開けないでください。
ブロワ・動力操作盤の近く(約50cm)には、ものを置かないでください。
電源コードの上には、ものを置かないでください。
電源プラグは、ほこりが付着していないか、1年に1回以上は確認してください。
ブロワ・動力操作盤などの電気系統が故障した場合は、維持管理会社または専門の施工会社に連絡してください。
これらの注意を怠ると、感電・発火の生ずるおそれがあります。

注意

■荷重による器物破損・障害事故防止
通常の埋設工事を行った浄化槽の上には、車などの重量物をのせないでください。
車などの重物がある場合には、特殊工事が必要になりますので、専門の施工会社にご相談ください。
これらの注意を怠ると、器物破損・傷害の生ずるおそれがあります。

■マンホール・点検口等からの転落・障害事故防止
マンホール・点検口等の蓋は、必ず閉めてください。また、ロック機構のあるものは必ずロックしてください。
マンホール・点検口等の蓋のひび割れ・破損などの異常を発見したら、直ちに取り替えてください。
マンホール・点検口等の蓋は、子供にさわらせないでください。
これらの注意を怠ると、転落・障害の生ずるおそれがあります。

■紙おむつや衛生用品の流入による、浄化槽のつまり防止
紙おむつや衛生用品、油脂類等は水に溶けません。また、殺虫剤、洗剤、防臭剤などを多量に流すと微生物の死滅のおそれがあります。浄化槽の正常な機能を妨げるものは、できるだけ混入させないでください。
これらの注意を怠ると、流入配管や浄化槽閉塞の生ずるおそれがあります。

浄化槽の上部荷重による浄化槽の機能支障防止
浄化槽の上部または周辺には保守点検または清掃に支障を及ぼすおそれのある構造物を設けないでください。
これらの注意を怠ると、器物破損・傷害の生ずるおそれがあります。また定期点検の妨げにもなります。

警告: 取扱を誤った場合に、使用者が死亡または重傷を負う可能性が想定されます。
注意: 取扱を誤った場合に、使用者が傷害を負う危険および物的損害の発生が想定されます。

ご使用に際しては次のようなご注意をお願いします

ホームページをご覧ください http://www.fujiclean.co.jp/

ISO審査登録
FRP製浄化槽及び産業廃水処理装置の設計、開発、製造、施工及び維持管理について品質マネジメントシステム審査登録を取得しております。

*ご使用される方には必ず取扱説明書をお渡しください。
*施工、維持管理は必ず資格者において各種要領書の通り行ってください。
*マンホールは積載荷重に適合したものを設置してください。
*その他ご不明点は売買の事業所にお問い合わせください。

*本仕様は改良のため予告なく変更することがあります。

I-05-17.07